Week 8 - Wednesday

COMP 1800




= What did we talk about last time?
= Namespaces
= Before that:

= Color and images
= Pixel class
= Image class



Questions?




Assignment 6




Function Variables




= What Python types have we talked about so far?

= Integers
= Floating-point values (decimals)
= Strings
= Booleans
= Lists
= Dictionaries
= Any of these types can be held in a variable



= What if what we wanted to store wasn't a value but was an
action instead?

= We can store functions into variables

= All you have to do is use the name of the function without the
parentheses

math

action = math.sqgrt # no parentheses, just the name
print (math.sqrt(5)) # prints square root of 5
print (action(5)) # also prints square root of 5




= One of the goals of computer science is reusing code that we
already have

= Maybe we've written code that processes everythingin a list

= But we can customize how we process it

= For example, recall the function that adds up everythingin a
list



= This function will sum everythingin a list

total (values) :
result = 0
value values:
result = result + wvalue
result




= This function multiplies everything in a list

product (values) :
result =1

value values:
result = result * wvalue
result

= There are two differences from the previous slide:
= The starting value of resultis 1 here instead of o
= We multiply instead of add each value




= This function will apply any function (called action) to
everything in the list, with a given starting value

process (values, action, starting):
result = starting
value values:
result = action(result, wvalue)
result




= These functions are functions we can use with process
= One adds two numbers, and the other multiplies them

add(a, b):
a+b

multiply(a, b):
a *b




= Now we can call process with the actions we defined

numbers =

[3I 4/ 9/ 2/ 1/ 7]

total = process(numbers, add, 0) # starts at O
product = process (numbers, multiply, 1) # starts at 1

= We can even use a built-in function like max

largest =

process (numbers, max, numbers[0])




Applications in Image Processing




= To create a custom color:

color = Pixel (255,165,0) # orange
green = color.getGreen ()

= Create colors using Pixel to specify RGB values
= Getindividual values using:

= getRed()

= getGreen ()

= getBlue()



Image methods

FileImage (file)
EmptyImage (width, height)

getWidth ()
getHeight ()

getPixel (x, y)
setPixel (x, y, pixel)

save (file)

Creates an Image object from a file name

Creates a blank Image of size width by
height

Return the width of the image
Return the height of the image

Return the Pixel which is the color at
(%X,¥)
Set the Pixel object at (x,y) to pixel

Save the Image to the file with the given
file name



= The book observes that many operations need to visit every column and
row of an image and transform the pixels in that location

= To generalize this process, we can make a pixel mapper function that
takes a function parameter that says how each pixel should be
transformed

= This function will:

= Get the width and height of the currentimage
= Make a new image that's the same size

= Visit every column of the old image

Visit every row in that column
= Put a new pixel into the new image by transforming the old pixel

= Return the new image



pixelMapper (image, transform):

width = image.getWidth ()

height = image.getHeight ()

newImage = EmptyImage (width, height)

X range (image.getWidth()) :

Yy range (image.getHeight () ) :
pixel = image.getPixel (x, V)
newPixel = transform(pixel)
newImage.setPixel (x, y, newPixel)
newlmage




= |n order to use the pixel mapper, we have to write function

that will transform pixel values
= Here's one that makes the photo negative of a pixel:

negative (pixel) :
red = pixel.getRed()
green = pixel.getGreen ()

blue = pixel.getBlue ()
Pixel (255 - red, 255 - green, 255 - blue)




= Once we have both the pixelMapper and negative
functions, we can use them together to create a negative
version of any image

newImage = pixelMapper (image, negative)




= Let's write a function we can use with pixelMapper that
will multiply the red, green, and blue values of a pixel by a
factor of two

= |f the value gets larger than 255, limit it to 255

brighten (pixel)




= Let's write a function we can use with pixelMapper that

will create a grayscale version of a pixel

= Remember that a color is grayscale if its red, green, and blue
values are all the same

= We can find out what that value as follows:

= value = .3-red + .59 - green + .11 - blue
= Then, the final color is (value, value, value)

grayscale (pixel)




= Co

lors will look strange if the red, green, and blue
components get swapped around
= Let's write a function that will make:

= The new red the old green

= The new green the old blue

ne new blue the old red

wacky (pixel)




= With our functions written, we can apply all three of them
individually to make an image that is negative, brightened,
and then with wacky colors

image = pixelMapper (image, negative)
Image pixelMapper (image, brighten)
image pixelMapper (image, wacky)




= As powerful as this technique is, it can only change a single
pixel at a time

= |t can't change the size or shape of the image, since it depends
on the new image being the same size as the old one

= [t has no memory of past pixels and can't predict future ones






Upcoming




= Work time for Assignment 6
= Cryptanalysis on Monday



= Read 8.2 and 8.3 for Monday
= Finish Assignment 6

= Due Friday before midnight!



	COMP 1800
	Last time
	Questions?
	Assignment 6
	Function Variables
	Types
	Putting a function in a variable
	Why would we want to do that?
	Summing everything in a list
	But what if I don't want to add them?
	We can make a function that does anything
	Let's make a few actions
	Using our actions
	Applications in Image Processing
	To use Pixel
	Image methods
	Pixel mapper
	Pixel mapper function
	Using the pixel mapper
	Making a negative image
	Brightening
	Grayscale
	Wacky colors
	Applying our changes
	Limitations
	Quiz
	Upcoming
	Next time…
	Reminders

