
Week 8 - Wednesday



 What did we talk about last time?
 Namespaces
 Before that:
 Color and images
 Pixel class
 Image class









 What Python types have we talked about so far?
 Integers
 Floating-point values (decimals)
 Strings
 Booleans
 Lists
 Dictionaries

 Any of these types can be held in a variable



 What if what we wanted to store wasn't a value but was an 
action instead?

 We can store functions into variables
 All you have to do is use the name of the function without the 

parentheses

import math

action = math.sqrt # no parentheses, just the name
print(math.sqrt(5)) # prints square root of 5
print(action(5)) # also prints square root of 5



 One of the goals of computer science is reusing code that we 
already have

 Maybe we've written code that processes everything in a list
 But we can customize how we process it
 For example, recall the function that adds up everything in a 

list



 This function will sum everything in a list

def total(values):
result = 0
for value in values:

result = result + value
return result



 This function multiplies everything in a list

 There are two differences from the previous slide:
 The starting value of result is 1 here instead of 0
 We multiply instead of add each value

def product(values):
result = 1
for value in values:

result = result * value
return result



 This function will apply any function (called action) to 
everything in the list, with a given starting value

def process(values, action, starting):
result = starting
for value in values:

result = action(result, value)
return result



 These functions are functions we can use with process
 One adds two numbers, and the other multiplies them

def add(a, b):
return a + b

def multiply(a, b):
return a * b



 Now we can call process with the actions we defined

 We can even use a built-in function like max

numbers = [3, 4, 9, 2, 1, 7]
total = process(numbers, add, 0) # starts at 0
product = process(numbers, multiply, 1) # starts at 1

largest = process(numbers, max, numbers[0])





 To create a custom color:

 Create colors using Pixel to specify RGB values
 Get individual values using:
 getRed()
 getGreen()
 getBlue()

color = Pixel(255,165,0) # orange 
green = color.getGreen()



Method Use

FileImage(file) Creates an Image object from a file name

EmptyImage(width, height) Creates a blank Image of size width by
height

getWidth() Return the width of the image

getHeight() Return the height of the image

getPixel(x, y) Return the Pixelwhich is the color at 
(x,y)

setPixel(x, y, pixel) Set the Pixel object at (x,y) to pixel

save(file) Save the Image to the file with the given 
file name



 The book observes that many operations need to visit every column and 
row of an image and transform the pixels in that location

 To generalize this process, we can make a pixel mapper function that 
takes a function parameter that says how each pixel should be 
transformed

 This function will:
 Get the width and height of the current image
 Make a new image that's the same size
 Visit every column of the old image

▪ Visit every row in that column
▪ Put a new pixel into the new image by transforming the old pixel

 Return the new image



def pixelMapper(image, transform):
width = image.getWidth()
height = image.getHeight()
newImage = EmptyImage(width, height)
for x in range(image.getWidth()):

for y in range(image.getHeight()):
pixel = image.getPixel(x, y)
newPixel = transform(pixel)
newImage.setPixel(x, y, newPixel)

return newImage



 In order to use the pixel mapper, we have to write function 
that will transform pixel values

 Here's one that makes the photo negative of a pixel:

def negative(pixel):
red = pixel.getRed()
green = pixel.getGreen()
blue = pixel.getBlue()
return Pixel(255 - red, 255 - green, 255 - blue)



 Once we have both the pixelMapper and negative
functions, we can use them together to create a negative 
version of any image 

newImage = pixelMapper(image, negative)



 Let's write a function we can use with pixelMapper that 
will multiply the red, green, and blue values of a pixel by a 
factor of two

 If the value gets larger than 255, limit it to 255

def brighten(pixel)



 Let's write a function we can use with pixelMapper that 
will create a grayscale version of a pixel

 Remember that a color is grayscale if its red, green, and blue
values are all the same

 We can find out what that value as follows:
 𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 = .3 � 𝑟𝑟𝑟𝑟𝑟𝑟 + .59 � 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 + .11 � 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 Then, the final color is (𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣, 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

def grayscale(pixel)



 Colors will look strange if the red, green, and blue 
components get swapped around

 Let's write a function that will make:
 The new red the old green
 The new green the old blue
 The new blue the old red

def wacky(pixel)



 With our functions written, we can apply all three of them 
individually to make an image that is negative, brightened, 
and then with wacky colors

image = pixelMapper(image, negative)
Image = pixelMapper(image, brighten)
image = pixelMapper(image, wacky)



 As powerful as this technique is, it can only change a single 
pixel at a time

 It can't change the size or shape of the image, since it depends 
on the new image being the same size as the old one

 It has no memory of past pixels and can't predict future ones







 Work time for Assignment 6
 Cryptanalysis on Monday



 Read 8.2 and 8.3 for Monday
 Finish Assignment 6
 Due Friday before midnight!


	COMP 1800
	Last time
	Questions?
	Assignment 6
	Function Variables
	Types
	Putting a function in a variable
	Why would we want to do that?
	Summing everything in a list
	But what if I don't want to add them?
	We can make a function that does anything
	Let's make a few actions
	Using our actions
	Applications in Image Processing
	To use Pixel
	Image methods
	Pixel mapper
	Pixel mapper function
	Using the pixel mapper
	Making a negative image
	Brightening
	Grayscale
	Wacky colors
	Applying our changes
	Limitations
	Quiz
	Upcoming
	Next time…
	Reminders

