
Week 8 - Wednesday



 What did we talk about last time?
 Namespaces
 Before that:
 Color and images
 Pixel class
 Image class









 What Python types have we talked about so far?
 Integers
 Floating-point values (decimals)
 Strings
 Booleans
 Lists
 Dictionaries

 Any of these types can be held in a variable



 What if what we wanted to store wasn't a value but was an 
action instead?

 We can store functions into variables
 All you have to do is use the name of the function without the 

parentheses

import math

action = math.sqrt # no parentheses, just the name
print(math.sqrt(5)) # prints square root of 5
print(action(5)) # also prints square root of 5



 One of the goals of computer science is reusing code that we 
already have

 Maybe we've written code that processes everything in a list
 But we can customize how we process it
 For example, recall the function that adds up everything in a 

list



 This function will sum everything in a list

def total(values):
result = 0
for value in values:

result = result + value
return result



 This function multiplies everything in a list

 There are two differences from the previous slide:
 The starting value of result is 1 here instead of 0
 We multiply instead of add each value

def product(values):
result = 1
for value in values:

result = result * value
return result



 This function will apply any function (called action) to 
everything in the list, with a given starting value

def process(values, action, starting):
result = starting
for value in values:

result = action(result, value)
return result



 These functions are functions we can use with process
 One adds two numbers, and the other multiplies them

def add(a, b):
return a + b

def multiply(a, b):
return a * b



 Now we can call process with the actions we defined

 We can even use a built-in function like max

numbers = [3, 4, 9, 2, 1, 7]
total = process(numbers, add, 0) # starts at 0
product = process(numbers, multiply, 1) # starts at 1

largest = process(numbers, max, numbers[0])





 To create a custom color:

 Create colors using Pixel to specify RGB values
 Get individual values using:
 getRed()
 getGreen()
 getBlue()

color = Pixel(255,165,0) # orange 
green = color.getGreen()



Method Use

FileImage(file) Creates an Image object from a file name

EmptyImage(width, height) Creates a blank Image of size width by
height

getWidth() Return the width of the image

getHeight() Return the height of the image

getPixel(x, y) Return the Pixelwhich is the color at 
(x,y)

setPixel(x, y, pixel) Set the Pixel object at (x,y) to pixel

save(file) Save the Image to the file with the given 
file name



 The book observes that many operations need to visit every column and 
row of an image and transform the pixels in that location

 To generalize this process, we can make a pixel mapper function that 
takes a function parameter that says how each pixel should be 
transformed

 This function will:
 Get the width and height of the current image
 Make a new image that's the same size
 Visit every column of the old image

▪ Visit every row in that column
▪ Put a new pixel into the new image by transforming the old pixel

 Return the new image



def pixelMapper(image, transform):
width = image.getWidth()
height = image.getHeight()
newImage = EmptyImage(width, height)
for x in range(image.getWidth()):

for y in range(image.getHeight()):
pixel = image.getPixel(x, y)
newPixel = transform(pixel)
newImage.setPixel(x, y, newPixel)

return newImage



 In order to use the pixel mapper, we have to write function 
that will transform pixel values

 Here's one that makes the photo negative of a pixel:

def negative(pixel):
red = pixel.getRed()
green = pixel.getGreen()
blue = pixel.getBlue()
return Pixel(255 - red, 255 - green, 255 - blue)



 Once we have both the pixelMapper and negative
functions, we can use them together to create a negative 
version of any image 

newImage = pixelMapper(image, negative)



 Let's write a function we can use with pixelMapper that 
will multiply the red, green, and blue values of a pixel by a 
factor of two

 If the value gets larger than 255, limit it to 255

def brighten(pixel)



 Let's write a function we can use with pixelMapper that 
will create a grayscale version of a pixel

 Remember that a color is grayscale if its red, green, and blue
values are all the same

 We can find out what that value as follows:
 𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙 = .3 � 𝑟𝑟𝑙𝑙𝑟𝑟 + .59 � 𝑔𝑔𝑟𝑟𝑙𝑙𝑙𝑙𝑔𝑔 + .11 � 𝑏𝑏𝑙𝑙𝑙𝑙𝑙𝑙

 Then, the final color is (𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙, 𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙, 𝑣𝑣𝑣𝑣𝑙𝑙𝑙𝑙𝑙𝑙)

def grayscale(pixel)



 Colors will look strange if the red, green, and blue 
components get swapped around

 Let's write a function that will make:
 The new red the old green
 The new green the old blue
 The new blue the old red

def wacky(pixel)



 With our functions written, we can apply all three of them 
individually to make an image that is negative, brightened, 
and then with wacky colors

image = pixelMapper(image, negative)
Image = pixelMapper(image, brighten)
image = pixelMapper(image, wacky)



 As powerful as this technique is, it can only change a single 
pixel at a time

 It can't change the size or shape of the image, since it depends 
on the new image being the same size as the old one

 It has no memory of past pixels and can't predict future ones







 Work time for Assignment 6
 Cryptanalysis on Monday



 Read 8.2 and 8.3 for Monday
 Finish Assignment 6
 Due Friday before midnight!


	COMP 1800
	Last time
	Questions?
	Assignment 6
	Function Variables
	Types
	Putting a function in a variable
	Why would we want to do that?
	Summing everything in a list
	But what if I don't want to add them?
	We can make a function that does anything
	Let's make a few actions
	Using our actions
	Applications in Image Processing
	To use Pixel
	Image methods
	Pixel mapper
	Pixel mapper function
	Using the pixel mapper
	Making a negative image
	Brightening
	Grayscale
	Wacky colors
	Applying our changes
	Limitations
	Quiz
	Upcoming
	Next time…
	Reminders

